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The proposition/lemma/equation numbers below refer to the main article
Zheng and Li (2010).

Proof of Proposition 4. By (2.5) and (2.6), for any t ∈ (0, 1],∫ t
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i.e., for any t ∈ (0, 1],
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Letting t ↓ 0, using the l’Hospital’s rule and noting that σ(j)
t are càdlàg, we

see that
ρ(jk)
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= 1 or − 1.

Therefore for all t ∈ (0, 1],∣∣∣∣∫ t

0
σ(j)
s σ(k)

s ds

∣∣∣∣ =

√∫ t

0
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(j)
s )2 ds ·

∫ t

0
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By Cauchy-Schwartz inequality, this holds only if σ(j)
s and σ(k)

s are propor-
tional to each other. Therefore, almost surely, there exists a scalar process
γt ∈ D([0, 1);R) and a p-dimensional vector (σ(1), . . . , σ(p))T such that

(σ
(1)
t , . . . , σ

(p)
t )T = γt · (σ(1), . . . , σ(p))T .
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Now we show that Xt := (X
(j)
t ) belongs to Class C. In fact one can always

find a p-dimensional standard Brownian motion W̃t such that

Wt = R1/2W̃t,

whereWt = (W
(1)
t , . . . ,W

(p)
t )T ,R is the (constant) correlation matrix ofWt,

andR1/2 stands for its square root matrix. Hence, writing µt = (µ
(1)
t , . . . , µ

(p)
t )T ,

we have

dXt = µt dt+diag(σ
(1)
t , . . . , σ

(p)
t ) dWt = µt dt+γt·diag(σ(1), . . . , σ(p))R1/2 dW̃t.

Next, we give a detailed explanation of the second statement in Remark 3,
namely, if ws 6≡

∫ 1
0 wt dt on [0, 1), then except in the trivial case when H is

a delta measure at 0, the LSD Fw 6= F , where F is the LSD in Proposition 1
determined by H(·/

∫ 1
0 wt dt). The reason is as follows: firstly, for any w =

(ws), the family of distributions {F cw : c > 0} is a scale family, i.e., for any
x ≥ 0, F cw(x) = Fw(x/c). Hence it suffices to show that for any w such that
0 < ws 6≡ 1 on [0, 1) and

∫ 1
0 ws ds = 1, Fw 6= F . In fact, Fw = F if and only

if mFw(z) = mF (z) for all z ∈ C+, and by the uniqueness of the solution to
the equation (1.3), this can be true only ifM(z) = −1/z · (1−y(1+zm(z))).
Suppose this is true, then by (3.28), (1 + zm(z))/m̃(z) = 1− y(1 + zm(z)),
or, 1/(1 + ym̃(z)) = (1 + zm(z))/m̃(z) = 1 − y(1 + zm(z)). By (3.23), the
last equation implies that∫ 1

0

1

1 + ym̃(z)ws
ds =

1

1 + ym̃(z)
.

Since both sides are analytical in m̃(z), we get∫ 1

0

1

1 + uws
ds =

1

1 + u
, for all u ∈ C such that Re(u) > 0.

In particular, focusing on u > 0, multiplying both sides by u, letting u→∞
and applying the monotone convergence theorem to the left hand side yield

(5.1)
∫ 1

0

1

ws
ds = 1.

However, by the Cauchy-Schwarz inequality, since
∫ 1

0 ws ds = 1, (5.1) holds
only if ws ≡ 1 on [0, 1).

Now we give the proofs of the various lemmas in Section 3.1
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Proof of Lemma 1. For notational ease we shall omit the superscript p,
and write v` = v

(p)
` , w` = w

(p)
` , and v

(p,j)
` = v

(j)
` etc. For each p, set

A = Ap = (v1 + w1, . . . ,vn + wn), and B = Bp = (w1, . . . ,wn). Then
S̃n = AAT , and Sn = BBT . By Lemma 2.7 of Bai (1999),

(L(F S̃n , FSn))4 ≤ 2

p2
tr((v1, . . . ,vn)(v1, . . . ,vn)T ) · tr(S̃n + Sn).

By condition (ii), tr((v1, . . . ,vn)(v1, . . . ,vn)T ) ≤ np · ε2
p. Moreover,

tr(S̃n) =
n∑
`=1

p∑
j=1

(v
(j)
` + w

(j)
` )2

≤ 2
n∑
`=1

p∑
j=1

(v
(j)
` )2 + 2

n∑
`=1

p∑
j=1

(w
(j)
` )2

≤ 2np · ε2
p + 2 tr(Sn).

The conclusion follows since εp = o(1/
√
p) and hence o(1/

√
n).

Remark 4. When applying this lemma to conclude that in Proposition 5
the drift terms are negligible, the v`’s are

∫ τn,`
τn,`−1

µt dt, whose entries are
O(1/n) = o(1/

√
p). Similar remark applies to Proposition 8.

Proof of Lemma 3. Let A = UDU∗ be the eigen-decomposition of A,
where D = diag(dj) with dj ≥ 0. Then (wA+ I)−1 = U(wD + I)−1U∗, and

||(wA+ I)−1|| = 1

minj |wdj + 1|
≤ 1.

Lemma 5 can be proved similarly.

Proof of Lemma 4. The proof relies on the following three facts: for
any p× p matrices C and D,
(1) | tr(CD)| ≤

√
tr(CC∗) · tr(DD∗) ≤ p · ||C|| · ||D||;

(2) if C and D are invertible, then C−1 −D−1 = C−1(D − C)D−1;
(3) ||CD|| ≤ ||C|| · ||D||.
Therefore

| tr
(
B
(
(w1A+ I)−1 − (w2A+ I)−1

))
|

≤p · ||B|| · ||(w1A+ I)−1|| · ||(w1 − w2)A|| · ||(w2A+ I)−1||.



4 XINGHUA ZHENG AND YINGYING LI

By Lemma 3 we see that (i) holds.
As to (ii),

|q∗B(w1A+ I)−1q− q∗B(w2A+ I)−1q|
=|q∗B(w1A+ I)−1((w1 − w2)A)(w2A+ I)−1q|
≤||B|| · ||(w1A+ I)−1((w1 − w2)A)(w2A+ I)−1|| · |q|2

≤||B|| · |w1 − w2| · ||A|| · |q|2,

where in the last inequality we used Lemma 3 again.

Proof of Lemma 6. Since −1/z = i/v, it suffices to show that 1 +
τq∗(A− zI)−1q ∈ Q1. In fact, let A = UDU∗ be the eigen-decomposition
of A with D = diag(dj) and dj ≥ 0. Then q∗(A−zI)−1q = q∗U diag(1/(dj−
iv))U∗q. Let q∗U = (w1, . . . , wp). Then

(5.2) Re(q∗(A− zI)−1q) =
∑
j

|wj |2dj/(d2
j + v2) ≥ 0,

and
Im(q∗(A− zI)−1q) =

∑
j

|wj |2v/(d2
j + v2) ≥ 0.

Proof of Lemma 7. This is by direct calculation. Using the fact that
for any two invertible matrices C and D, C−1 + D−1 = C−1(C + D)D−1,
and plugging in z = iv we get

Re(tr(A(B − zI)−1A∗)) =
tr(A(B − ivI)−1A∗ +A(B + ivI)−1A∗)

2

=
tr(A(B − ivI)−1(2B)(B + ivI)−1A∗)

2
.

The last term is nonnegative because the matrix inside the trace function is
Hermitian nonnegative definite. Similarly,

Im(tr(A(B − zI)−1A∗)) =
tr(A(B − ivI)−1A∗ −A(B + ivI)−1A∗)

2i

=
tr(A(B − ivI)−1(2ivI)(B + ivI)−1A∗)

2i
≥ 0.
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Proof of Lemma 8. Suppose otherwise that there exist z1 = a + ib 6=
z2 = c+ id with a, b, c, d ≥ 0 such that∫ 1

0

1

1 + z1ws
ds−

∫ 1

0

1

1 + z2ws
ds = (z2−z1)

∫ 1

0

ws
(1 + z1ws)(1 + z2ws)

ds = 0,

i.e.,

(5.3)
∫ 1

0

ws(1 + z1ws)(1 + z2ws)

|1 + z1ws|2|1 + z2ws|2
ds = 0.

Let us first study the imaginary part. We have that

Im((1 + z1ws)(1 + z2ws)) = −(b+ d)ws − (ad+ bc)w2
s ≤ 0,

hence in order for (5.3) to hold, it has be that b = d = 0. It follows that

Re((1 + z1ws)(1 + z2ws)) = 1 + (a+ c)ws + acw2
s ≥ 1,

contradicting (5.3).

Finally we prove Proposition 7. The proof uses the following Lemma which
is of some independent interest.

Lemma 10. Suppose that Xt is a one dimensional diffusion process sat-
isfying

dXt = µt dt+ σt dWt, t ∈ [0, 1],

and there exist constants Cµ, cσ, Cσ such that

|µt| ≤ Cµ, and 0 < cσ ≤ |σt| ≤ Cσ <∞, for all t ∈ [0, 1] almost surely.

Suppose further that the observation times (not necessarily independent of
Xt!) 0 = τ0 < τ1 < . . . < τn = 1 satisfy

max
1≤i≤n

n|τi − τi−1| ≤ C∆ <∞.

Then the realized volatility [X,X]1 :=
∑n

i=1 |Xτi −Xτi−1 |2 satisfies

P

(√
n

∣∣∣∣[X,X]1 −
∫ 1

0
σ2
t dt

∣∣∣∣ ≥ x) ≤ √2 exp
(
3C2

µ/(2c
2
σ)
)
·exp

(
−x2/(16C4

σC
2
∆)
)

for all 0 ≤ x ≤ C2
σC∆
√
n.
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Proof. The proof makes use of Lemma 3 in Fan, Li and Yu (2010) and the
Girsanov Theorem. Denote A(x) = An(x) = {

√
n|[X,X]1−

∫ 1
0 σ

2
t dt| ≥ x}.

Define

Zt = exp

(
−
∫ t

0

µs
σs

dWs −
1

2

∫ t

0

µ2
s

σ2
s

ds

)
, t ∈ [0, 1],

which is a martingale (under P ), and define a measure P̃ via Radon -
Nikodym derivative dP̃ /dP |Ft = Zt. Then under measure P̃ , Xt satisfies

dXt = σt dW̃t,

where W̃t is a standard Brownian-motion under P̃ . Hence by Lemma 3 in
Fan, Li and Yu (2010),

P̃ (A(x)) ≤ 2 exp
(
−x2/(8C4

σC
2
∆)
)
, for all 0 ≤ x ≤ C2

σC∆

√
n.

Now by the Cauchy-Schwartz inequality,

P (A(x)) = Ẽ
(
1A(x) · 1/Z1

)
≤
√
P̃ (A(x)) · Ẽ

(
1/Z2

1

)
,

where Ẽ stands for the expectation taken under measure P̃ . However, by
a similar argument as in the proof of Lemma 3 of Fan, Li and Yu (2010)
(namely, firstly using a time-change for martingales and then applying the
optional sampling theorem) one gets that

Ẽ
(
1/Z2

1

)
= Ẽ exp

(
2

∫ 1

0

µs
σs

dW̃s +

∫ 1

0

µ2
s

σ2
s

ds

)
≤ Ẽ exp

(
2B̃C2

µ/c
2
σ

+ C2
µ/c

2
σ

)
= exp(3C2

µ/c
2
σ),

where B̃ is a Brownian-motion under P̃ resulted from the time change of the
martingale

∫ t
0 µs/σs dW̃s. The conclusion follows.

Proof of Proposition 7. It suffices to show that (tr(ΣRCV
p )−tr(Σp))/p

→ 0 almost surely. By Lemma 10, there exist constants c, C1, C2 > 0 such
that for all 1 ≤ j ≤ p and 0 ≤ x ≤ c

√
n,

P
(√
n|ΣRCV

p;jj − Σp;jj | > x
)
≤ C1 exp{−C2x

2}.

Hence for any 0 < ε < c and for all p,

P

(∣∣∣∣∣tr(ΣRCV
p )− tr(Σp)

p

∣∣∣∣∣ ≥ ε
)
≤

p∑
j=1

P
(
|ΣRCV
p,jj − Σp;jj | ≥ ε

)
≤p · C1 exp(−C2ε

2 · n).

The almost sure convergence then follows from the Borel-Cantelli Lemma.
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